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’ FREE VIBRATIONS FOR A SEMILINEAR WAVE EQUATION
Paul H. Rabinowitz
Introduction
This paper is primarily concerned with the existence and regularity of free vibrations for a
one dimensional semilinear wave equation. To be more precise, consider the partial differential

equation:

(0.1) utt-uxx+f(x,u) =0, xe(0,m), te R

together with the boundary conditions

(0.2) u(0,t) = 0 = u(m,t) , te IR.

We are interested in the existence of solutions of (0.1)-(0. 2) which are periodic in t . Suppose
f(x,0)=0 so u =0 is such a solution. Following the terminology used in ordinary differential
equations, we call a nontrivial time periodic solution of (0.1)-(0. 2) a free vibration. One of the

difficulties in free vibration problems is that the period is not known a priori. Our main result is

that under conditions on f given in §l, for any period which is a rational multiple of =, (0.]1)-

(0.2) possesses a classical free vibration possessing that period.

While our major concern is with free vibrations, the techniques we use for (0.1)-(0. 2)
work equally well for the forced vibration case where f depends explicitly on t in a periodic
! fashion as well ason x and u.

4 There has not been much work on periodic solutions of such wave equations. A certain

amount of effort has gone into the study of perturbation problems for the forced vibration case where
f is replaced by € o(x,t,u) in (0.1) with ¢ near 0. See e.g. [l1] and the references cited there

Very little has been done for the free vibration case. A few people have given formal solutions for
(0.3) utt - uxx + ¢ g(x,u, ux,ut) =0

together with boundary and periodicity conditions. See [2]. Kurzweil [3]-[4) used an averaging

method for a problem of the form (0, 3) with u, and uy terms appearing in a special fashion.

Sponsared by the United States Army under Contract No. DAAG29-75-C-0024 and the Office of Naval
Research under Contract N00014-76-C-0300, Reproduction in whole or in part is permitted for any

purpose of the United States Government,
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More reéently Fink, Hall, and Hausrath [5] and Stedry and Vejvoda [2) have obtained some results
for equations of the form (0. 3) with such g's as (Il - ui)ut, (- uz)ut, and (1 - uz)u. They ob-
tain weak solutions which are piecewise continuous. Melrose and Pemberton [6] have obtained
continuous weak solutions for an equation like (0.3). There does not seem to have been any
rigorous work other than our own on (0.1)-(0. 2) for nonperturbation problems.

Naturally one must use global methods to treat (0.1) for f's which are not small. Our
1 approach to (0.1)-(0.2) is via the calculus of variations. For definiteness suppose we are trying
{ for a 2n periodic solution of (0.1)-(0.2) and f depends onlyon u. Let T =[0,7]x [0,7] and

consider

(0.4) ®(u) = fT[%(uf- ui) - F(u)]dxdt
where

F(z) = j;)z f(s)ds .

Thus the integrand for (0.4) is the Lagrangian for our problem. Formally critical points of & de-
fined on a suitable class of t periodic functions are weak solutions of (0.1)-(0.2). The function
® is indefinite in the sense that it is neither bounded from above or from below on e.g. WI’Z(T).
We do not know how to obtain nontrivial critical points-of & in anydirect fashion. However under
conditions on f given in §l, nontrivial critical points un can be obtained for & restricted to
finite dimensional subspaces Bn of admissible functions. Difficulties which arise in attempting
to get the functions u to converge to a solution of (0.1)-(0. 2) lead us to study a modified
Lagrangian and a corresponding modified version of (0.1). This is carried out in §l. Estimates
are obtained in §2 which enable us to solve the modified problem. Then the existence of weak
solutions of (0.1)-(0, 2) is shown in §3 and their regularity is studied in §4.

For all of the above we assume f = f(u) and we seek a 2w periodic solution in t of (0.1)-
(0. 2). Various extensions of our main results are carried our in §5. In particular we show there are
free vibrations of (0.1)-(0. 2) for any period which is a rational multiple of 7 . The effect of

weakening the hypotheses made on f in §l1 is also studied. Finally the forced vibration case is

treated, Some topological results required in §1 are proved in the Appendix.

o
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The variational method used in §] to obtain approximate solutions is fairly general and

may be useful in other situations involving variational problems with indefinite integrands.

A natural further question to pursue is whether results analogous to ours can be obtained
for free vibrations of quasilinear wave equations such as
(0. 5) U, - ((r(ux))x + f(u) = 0

together with (0. 2). Quite recently R. Di Perna has proved that in striking contrast to (0.1), if

f=0 and o satisfies some reasonable conditions, then (0.5), (0.2) possesses no nontrivial free

vibrations.

A second interesting question to ask and for which we have no answers is whether (0.])-
LY (0. 2) possesses free vibrations with periods which are irrational multiples of = .
Finally we are indebted to E. Fadell for his assistance with the topological result,

Lemma A. 2, given in the Appendix. We also thank L. Nirenberg for some ideas which led to the

proof of the regularity result, Theorem 4.1, and to H. Brezis for some suggestions wt =h led to

Theorem 5. 6.
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§1. The modified problem and its approximate solution
Some notation is in order. Let T = {(x,t)|x ¢ [0,m), te¢ [0,27]} and consider the set of
Q0 °
C functionson T, 2n periodic in t and vanishing near x =0 and x = w, Let H denote

the closure of this set with respect to l[ull = §|: (I D" u|| where L= Z( T) = l:l o
|e]<m

denotes a derivative of order |o| and the usual multi-index notation is being employed. Let
H_ denote the closure of ¢® functions on T, 2m periodic in t, with respect to |- || H_
Let C = C (T) denote the set of m times continuously differentiable functions on s Zn
periodic in t , and satisfying the boundary conditions (0.2). The usual maximum norm is used
for c™.

We begin our investigation of (0.1)-(0. 2) with the problem

u. . -~-u 4+ fuy=0, 0<x<m, te R
(1.1) tt XX

u(0,t) = 0 = u(m,t), u(x,t + 2m) = u(x,t)
which is technically slightly simpler than (0.1). It is assumed that f satisfies
(1) fe Cl(]R,IR) and £(0) = 0
(fz) f is strictly monotonically increasing, i.e., 2y > z, implies
f(zl) > f(zz)
(f£.) f is superlinear at 0 and ® , Loe.
(1) f(z) =o(|z]) at z=0 and
(1i) There are constants z >0 and 0 ¢ [0,3) such that
F(z) = foz f(s)ds <0 z f(z) for |z| >z

Remark 1.2: By (f)), zf(z)>0 for z+0 andby (£,) (), if |z] > Z

1 F'(z)
i 3) oz = Flz) °

ol—

Integration and exponentiation of (1. 3) then shows |z| < a F(z) for |z| >z where a >0,

Hence by (f3)(11), 1 4

(1.4) 121 < a0 |f(2)] for |z| >z

which justifies the term superlinear in (fs)(ii).

-4~
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> - An important role in the study of (1.1) is played by N(D), the null
ot ax

space of 0. It is easy to see that the closure in L2 of N(D is
2 1
(1.5) N = {p(x+t) - p(-x+t)| pe L7(5")}
where Sk'l denotes the unit sphere in IRk. Let NJ“ denote the orthogonal complement of N in

LZ. If u is a classical solution of (1.1), then u = v + w, ve N, we N"‘, We can now state

our main result:

Theorem 1.6: Let f satisfy (fl)-(f3) and fe Ck, k > 2. Then thereisa u = viwe (Ckn N) &
(C‘H’l n NJ') such that u is a nontrivial solution of (1.1).

The proof of Theorem 1.6 will be carried out in §l1-4. It is a consequence of an existence
result proved in §1-3 and a regularity theorem given in §4.

The fact that there is no upper bound on the growth of f as |z|- creates some difficulty

for us later which we bypass by introducing a Cl truncation fK of f defined by

f(z) y lz| <k
(1.7) £42)= (HK) + £'(K)(2-K) + pK)(z-K)° z>K
£(-K) + £(-K)(2+K) + p(K)(2+K)>, z < -K

where p(K) will be chosen appropriately later. That fK(z) grows like z3 at «© is not crucial
but there is a cut-off power beyond which our arguments fail.

We will solve (l.1) with the aid of a modified problem which can now be introduced. Let
B, K > 0. The modified equation for u = v+w ¢ Nt then is:
(1. 8) Du-ﬂvtt+fK(u)=0, 0<x<m, te R

u(0,t) =0 =u(m,t) ; u(x,t+ 2m) =u(x,t).

Our goal is to solve (1. 8) for any B, K > 0 and then obtain a solution of (1.1) by choosing K
appropriately large and letting B- 0,

Let
(1.9) I(u) = fT[%(ut2 - ui - B v:‘) - F (u)]dxdt
where FK(u) = j(')z fK(s)ds. Then I(u) is defined for all u e ﬁl and it is easily verified that

formally, any critical point of 1 is a weak solution of (1.8). We do not know how to obtain

abs
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critical points of I directly. However by restricting 1 to finite dimensional subspaces En of

Lz or Hl’ corresponding critical points, un, of I|E are obtained which can be shown to corn -
n

verge, along a suosequence, to a nontrivial solution of (1.8). The machinery which is used to find

the approximate criti~al points is provided by the next theorem. Below, Bp = {xe¢ 1Rm| |x| <p},

j m : AL m
R = {x=(xl,...,xm)< R | X =0, j+l <i<m} and (R)" = {x:(xl,...,xm)c R | x, =0,
1<i<j)

Lom m m
Theorem 1.10: Let Je C(R ,RR) and I:IR - IR where J(x) <I{x) forall xe¢e R and I(x) < 0
for all x e le. If there are constants R >r >0 such that J >0 in (Br \{op N (IRk)J“ while
I1<0 on IRm\BR, then J has a critical point in {x IRm|](x) >0} and a corresponding critical
value characterized by
(1.11) o= 4nf ma J(h(x)) >0
he I' Xe IR)%“ N B

R
where I' = {he C(IRk+l n ER’ R™), h(x) = x if I(x) <0}.

Remark 1.12: The proof of Theorem 1.10 is contained ip the Appendix. Note that the hypotheses of
the theorem imply x = 0 is a critical point for ] and that ] possesses a positive maximum with
a corresponding critical point in BR' However in general the maximum of ] is not the critical
value given by (1.1l). In particulax; for our application where J =1 as defined in (1. 9y, I Is not
bounded from above or from below in él , SO there is probably no hope of getting a solution of (1.8)
via maximizing I on finite dimensional subspaces of Ijll.
To obtain approximate solutions of (l. 8), define
E =span {sin jxsinkt, sinjxcos kt|0<j,k<n}.
Since dim En = an + n =m, we can identify En with R" . Set
N* = span {sin j x sin k t, sin j x cos k t|k > j}
and
N™ = span {sinj x sin k t, sin § x cos k t|j >k} .
| Set J =1 as defined in (1.9) and consider IIE v BY (fl) and (1.7), Ic Cl(En,IR) and by ([Z) and
n

(1.7), 1<0 on IRkE(N(})N_) n Bn. Moreover by (1.7), if u e L.2 and ||ul| 2 =1, I(au)- -»
y

as |a| -+ o, Hence there is an R = W®) such that I(u) <0 if ue E, and [u| , >R. Lastly
L

s
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observe that for r = r(n) sufficiently small, by (f3)(l), I1>0 in (Br\{o}) n (mk)l (where
®E =Nt N B3
k+1 k ;
Let IR =IR & span {sin x sin 2t}. Invoking Theorem 1.10, we have:

Lemma 1.13: IIE pPossesses a critical value e ® cn(p, K) characterized as

n

(1.14) c = inf max I(h(u)) >0
n h‘rn u¢mk+lﬂ§R

where I‘n = {he C(le+l n ER,En)|h(u) =u if I(u) <0}.

Remark 1.15: Actually to apply Theorem 1.10, all we need is z fK(z) >0 instead of (fz). More -
over if fK is even, we can drop (fz) and weaken (f3)(i). See e.g. [7] or [8]. We also observe
for later reference that (fs)(i) will not be used for any of the estimates obtained from this point

on until §5 except for Lemmas 2. 47 and 3, 40,

Our goa! s to show that if u is a critical point of IIB with I(un) =c., then a
n
subseque‘c» verges to a solution u = u(B,K) of (1.8). To achieve this, estimates are
required fo tions un The first two steps in obtaining suitable bounds are contained in

the following result.
For the remainder of this paper, subscripted a's, Y's, M's, and A's repeatedly denote
positive constants,
Lemma 1.16: There exist positive constants Al’Ml independent of n, B, and K and such that
o

1 e &k
(R |

o
2 1w ) IlLl <M.

Proof: We exploit (1.14) to get 1°. Set vV =(N @®N~ @span {sin x sin 2t}) N E . Since
h(u) =uer , by(l.14),

(1.17) ¢ < max I(u) € max I(u) .

=
ue vnnBR(n) ux ¥

The right hand side of (1.17) is finite by (1.7) and the form of I. Suppose the maximum is achieved
at u = Gn . Each ue Vn can be written as u =r(a sinf sin x sin 2t + cos £ ¢(x,t)) where
[ sin x sin 2t| _ = a-l, ee (NON)NE, flol ,=1, £¢ [0, 2m), and r= [u] ,. Choosing

2 n LZ LZ

L
u=u with L% norm r = r(n), and observing from (1.14) that I(ﬁn) >0, we find
n

-7
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2
¥ 2 2 2 2 2., -2
(1.18) L cos §_/:r(wx-wt)dxdt+gr o ngvm dxdt

- 3rz 2
+ [ @ dxdt < S—sin” ¢

v - i
where U =V, EW N&N™. Since all integrals on the left hand side of (l.18) are nonnegative, i

n

we conclude that

= 302
(1.19) J Fe@ dxdt < 2o
T
Remark 1. 2 implies that for |z| < K |
I}
(1.20) Fg(z) = F(z) > al|zl - a,
where @), @, are independent of K . By (1.7) for z >K
1
K
(.21 Fe(z) = FK) + f(K)z-K) + f—;—l (z-K)Z + -ﬁ?i(z-x)“ k

In particular for z ¢ [K,2K], | ]

0
Fe(z) > FK) > oK - a,

while for 2K<z =yK, y >2, we have
4
p(B) , 4 L, A4 Ly-ldd =z
Fplz) 2 3 (z-K) 2_4(\(1)1( -q(y)z _>_26

provided that p(K} >1 which choice we henceforth make. Similar estimates hold for z < 0. Hence
forall z¢ R,

]
(1.22) Fg(z) > a3|z| =,

where § = min(4,6-l) > 2 and the constants ay,a, are independent of K,

Using (1.19), (1.22), and the Hélder inequality, we see that

5
3 2 - 6 -2 2 3
(1.23) 3f 2 a, j:rlun[ dxdt-as_>_a6(j:run dxdt)” - ag =a 1 - a.

Since & > 2, (l.23) gives an upper bound for r:
(1.24) r<f

where r is independent of n, B, or K. Returning to (1.17) and using the form of I, we get

A2
rz sin2§5 s A

(1. 25) c <)< = i

n

N

which proves 1,




To verify 20, observe first that

. _F el R 2 2
(1.26) €, = M) = jT' (300 = U - B Vo) - Fylu ) Jdxdt .
Since u is a critical point for I 'E .
n
(1. 2\7) I'(u )e = 0 = fT(um Py Uny®x T BV ¥y - (U )e)dxdt

for all ¢ ¢ En where ¢ =y + X, e N, Xe NJ. Clioosing ¢ = LR in (1. 27) and forming (1. 26) -
El(l. 27) yields
(1. 28) c = f(lf (u )u_ - F,(u_))dxdt
s n T 2°K "ntn K “n i
A simple computation shows that (with u = un)

(1.29) f(%fK(u)u - Fe(u))dxdt = [ (% f(u)u - F(u))dxdt
T T ()

1368 - FK) - S-K)K) +3 K(u-K)E(K) + A8 k-1’ 45 pk)u-K)* Jaxat
T (u)
2

H 0 FHRK) - PRS-k -k e R - i) + L) Jaar
T,(u) :
3

where T (u) = {(x,t) ¢ T||u(x,t)| <K}, T,(u) = {(x,t) ¢ Tu(x,t) >K}, and T,(u) = T\(Tl(u)U T,(v)).

Using (f3)(ii), it is easy to verify that there is a constant Yy >0 and independent of K such that
1 1
(1.30) Ji > (W - F(u)dxdt > -y +6 - 8)/  f(uu dxdt
T Tl(U)

t 1 -0 ok + B ke’ ¢ Lok tjax at
T,(w)

+f [(3l -0) f(-K)(-K) + ﬂf’— (-K)utK)’ +'8£P(K)(U+K)4]dxdt

T3(U)
provided that pK) >4 (f(l»:)4 + £( -};\4) which choice we make. Lastly there is a constant Y, >0
and independent of K such that
(1.31) JE (wudxdt <y, + [ f(u)u dxdt
K -t
T Tl(u)

+ [ [k + p(KIK(U-K)® + %p(m(u-x)“] dxdt
T,(u)

FL KGR+ pKK) (R + 2 ARk Haxat
T,(u)

-9-
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provided that

MK > 101 o0+ kw0t + (0t ek ¢kt gt

q which we further assume. Combining (1. 28), (1.30)-(l. 31) yields
>
(1.32) ¥, 3 y4{fK(un)undxdt
for constants Y0¥, independent of n,B, and K . Hence 2" obtains ,
Remark 1.33: For later reference, observe that
(1.34) ||fK(un)[| j X,
b L
with M2 independent of n, B, and K since (with u = un),
(1.35) J g dxdt < [ |f(u]dxdt + [ f(u)u dxdt
T T4(u) Ts(u)

where T, (u) = {(x,t)e T||u(x,t)| <1} and Tg(u) = T\T4(u) . Hence (1. 34) follows from (1. 35)
and 2° of Lemma 1.16. Note also from the same result and the form of fK(u) that
(1.36) ||un|| S8
L
where A2 is independent of n and B but depends on K,

Remark 1.37: It is not difficult to verify that to obtain the results of this section it suffices to

assume (f3) and
(f) fe C(IR,IR) and £(0) =0
(i'z) f is monotone nondecreasing

provided that we drop the f{'(K) term in (l.7).

-10-
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§2. Solution of the modified problem.
Starting from the bounds just obtained for fK(un), we shall use bootstrap arguments to
estimate u in stronger norms. These new estimates depend on B and K. However they suffice
to show a subsequence of (un) converges to a classical solution u = u(p,K) of the modified equa-

tion. An additional argument shows |[un|| > Y(B,K) >0 so u is a nontrivial solution of (1.8).

(&
The above program will be carried out as a series of lemmas. First some brief preliminary

- 1
remarks about N. From (l.5), we have if ve N, v = p(x+t) - p(-x+t)= v+ -v where pe LZ(S ¥s

Imposing the normalization

2m
(2.1 [p) = [“p(s)ds =0
. 2.1 =
makes p unique. A simple computation shows for p,qe L(S'),
1

(2.2) J pOxtt) a(-x4tydxdt = > [p)(a].

T
Hence for v = v+ - v e N, (2.2) and our normalization [v+] = [v-] =0 imply
(2.3) f v dxdt = f((v+)2 + (v)P)dxdt |

‘F T

With these observations in hand, we begin our estimates for LR + w e N BNL 2
Lemma 2.4: If un is a critical point of I|E and I(un) = cn, there are constants M3, M4 >0
TRy e 2 ;
2
(2.5) Bl s ||v,,tllLZ < M,/
and
3

(2.6) Bll vl 2 < Nl 5 < M@+ gl )

where M3 is independent of n, B, and K and M4 depends only on K.

Proof: From Lemma l.13 we have

1 -
(2.7) I'(u )g = 0
i = —! 1z - g1 = - =
for all ¢ ¢ En. Choosing qp—vn RV vn = pn(x+t) pn( X+t) vyields
2
(2.8) ﬁﬂvnt” 5 © f fK(un) v, dxdt < an”C ||iK(un)]| 1
L 4 L
+
< 2llv g Il
v L
+ - . RO _
since || ¥ “C | s "C Using the normahzatxonl [pn] = 0, we also have
17 2
(2.9) valls = e | < (2m* |ip, |
— 2
s e "TL4s)

“1l-
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Remark 2.16 A proof of the C

Combining (2.9) with (2. 8), (2.2)-(2.3), and (1, 34) gives (2. 5).

To obtain (2.6), let ¢ = v

Eataf
= - f(u)v dxdt < | f u)ll v 0 5.
LZ T K' 'n’ ntt K' n LZ ntt I-'2

L En in (2.8). Then

(2.100 B Vntt"
The definition of fK(z) impli~s there is a constant a = a(Kk) such that

[fglz)] < a) (1 + |z13)
with this observation, (2.10) implies (2.6).
Remark 2.1l: Note that (2.10) contains a || fK(un)ll 7 cerm on its left hand side while Lemma 1. 16
only provides us with a bound on || fK(un)un Il Ll . The same estimates would have been obtained
had we been working with f instead of fK' It was to bridge this reqularity gap that led us to
introduce fl( . How this is done will be seen shortly in Lemma 2.18,

To continue, a representation theorem for solutions of

Ow = g, 0<x<m, te R
(2.12)

w(0,t) =0 = w(m,t), w(x,t+2m) = w(x,t)

is required.

Lemma 2.13: If ge cdnnt nnh, j >0, there exists a unique W« o nt

j+l

(H' N H1 n N'L) satisfying (2.12) and the map from g- w is continuous between these spaces.

Moreover letting

214 et = -3 [T g, marag s 5 T[T g, marat,
X tx-§ 0 t-£
for the Cj case, w has the representation
(2.15) w(x,t) = (Fg)(x,t) - Z Q((¥g)(x,t))
where
(Zp)(x,t) = p(x+t) - p(-x+t)
and

(QY) = 3= [ wtv=s,0) - wtyes, s,

J i

case can be found in [9] and the H

case in [10]. For j = 0, the

solution is only a weak solution of (2.12).

-]2-




Some further notation is required at this point. For Q C an, ae (0,1), and ue C(Q,R),

let
ful 2 Jul % sup LMREMWL won o gy
Ca(n) C(82) X#ye Ix_yla c() a

It is easy to verify that

| z ol <zjpl
o c(T) csh

C(T)

Returning to our estimates for u , we have

= : Tl < 2yl
| Cal_Sl) a

Lemma 2.18: There is a constant A3 depending on K and B but independent of n such that

< .
12 A

bt (2.19) llw Il
C

Proof: Equation (2.7) implies

D = - =
(2. 20) w <) L Pn fK(un) Ln |
where P, denotes the orthogonal projector of LZ(T) onto En. Applying Lemma 2. 3 and (2.17) to

(2.20) shows for any a ¢ (0,]) ,
5
(z.21) lw i A
n’ @ 2 n’ @
To further estimate the right hand side of (2. 2l), let

xx,t) = [T R g ydrag
X t+x-§

Then by Schwarz' inequality,

(2.22) [x(x,0)] < N2 =[] ,
L

and similarly

1 1 1
(2.23)  |x(x+h,t+k) - x(x,0)] < (fALZdeg)"‘(fA t%drde)? <elh] + kD28l ,
L(T)

where A denotes the region of integration for the difference in the two values of x . Since Ca(T)

is a Banach algebra,

(2.24) lexll = < a llell  lIxl
Ca 2 Ca Cﬂ'
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for all P X e c?. Hence taking a = 3 and combining (2.20)-(2.24) yields

(2.25) Il 3 < agle v - By Gl 5 < ag@llv Il 5+ gl )
C L L L

Applying (2. 6) we further conclude

(2.26) “wﬂ"Cz

3
1 < a L+ flul

where a, depends on K .
To improve (2. 26) and obtain (2.19), some simple observations and an interpolation argu-

ment are used. By (l.36) and (2.5),
M
3
@2 gl < vl * 1wl 126 < (52 + I long
Using the Hélder inequality and (l. 36) and (2. 5) again shows

(2.28) an"L4 = "un'vn" 4 < a5

L

where ag depends on B and K.

By a general interpolation inequality [I1], for - <A <p <v <o ande.g. ¢¢ COO(T) s
R p-A
v-\ v-\
(2‘ 29) "‘p"Ll/P’ 5. YIH‘PHLIA ”‘P"Ll/v

where for s <0, if p is the greatest integer in - s and -a=p+ % .
Y 1ol if a =0
|oT=p

Ha(Dqu) if a>0
|o

foll s =
L

(Actually the inequality in [Il1] requires ¢ to have compact support but because of our boundary
conditions in x and periodicity in t , the result readily extends to our case.) Choosing

A= -1 shows [o] i Hl(lp). Further setting v = § and p = 0 in (2.29) gives
L

1 1
(2.30) el 1(Hn(<p))a ||«>l|z < vy lell®y llell®,
C c?

L-‘ [

Combining (2. 26)-(2. 28) and (2. 30) then yields

1
2,31 w < 14 ||w ||
(2.31) Iy < w0+ Ity

from which the lemma follows.

-14-
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Now that (2.19) has been established, it is easy to use bootstrap arguments to estimate
higher derivative norms of (un).
Lemma 2.32: There is a constant 1\4 depending on K and B such that

< A

(2.33) + "w“"HZ <A, X

v |l
n H3
Proof: By Lemma 2.13 with j =1, (2.5)-(2.6), and (2.19), we have

$4 240 I wn” Hl = e Vatt ~ Pn fK(un)”LZ Z 9%
From (2.7) with ¢ = v 4’ we obtain
nt

2 1
(2.35) Bllv ,I%, < | [ fu du vy dxdt] ‘
n ) T nt

t

o ot i O M WA SRR SO 2 e AT 54 ot

so (2.5), (2.19), (2.34) and the Schwarz inequality give

(2.36) < a

v Ll :
nt3 LZ 3
For ve N Ck, k >2, Ov = 0, and it is easy to verify that all derivatives of order k of v have
the same L2 norm. Hence (2.36) and (2.5)-(2.6) imply
(2.37) v |l SN e
n H3 4
Finally Lemma 2.13 again with j =1 and our above estimates show

(2.38) < a

el 5 € & .
nHZ 5

Thus (2. 33) obtains
We can now solve (1. 8). {

Theorem 2.39: The modified equation (1. 8) possesses anontrivial classical solution.

Proof: Lemma 2,32 and standard embedding theorems imply that along a subsequence of the u

v, converges in C2 NN to v=v(,K) e H3 N N and w_~converges in HZ n NL( and therefore

in C% n Nl) to w = w(p,K) ¢ HZ n NZ. Thu- we can pass to a limit in (2.7) to conclude for

u=v+w that

(2.40) I'(u)p = 0 for all ¢ « nk()]N En :

This implies u satisfies (1.8) a.e. Since fK(u)¢ C and w satisfies (2.15), we see that w ¢ C!t,

Assuming for the moment that v ¢ C3, Lemma 2.13 shows w ¢ C2 and hence u is a classical

solution of the modified equation.

«]5




2
To verify that ve¢ C, we write v = p(x+t) - p(-x+t) with [p]=0. From (2.40) or (1.6) it

follows that

(2.4 II‘ [-B(p'"(x+t) - P''(-x+t)) + fK(u)](L(xH) - {(-x+t))dxdt = 0

forall T LZ(S'). Denoting the expression in brackets by y(x,t) and using the periodicity of ¢

B iy i WS P

and ¢ in t shows

(2.42) f"fz"

W(x, t) L(x4t)dxdt = f;’[i“"‘ W(x, t) L(x4t)dxdt

00
= fvfzwgp(x,s-x)g(s)dxds
| 00
| and
2.43) [T 27 gix,0(-x4tdxdt = [T 2Ty, s x)0(s)dxds.
: 0o o 0 "o
| Thus

(2.44) fz" ) T (W(x, %) - b(x, s 4x))dx]ds = 0
0 2 1 0
forall Le L (S). Hence
(2. 45) LT w(x,5-%) - ¢(x,s4x))dx = 0 .
Substituting for fx(')om (2. 4]) and simplifying yields
(2. 46) 2w B p''(s) = f21r fK(u(x,s-s)) - fK(u(x,s+x))dx 3
Since we C' and ve CZ, (2.46) shows p" is continuous in s and therefore v ¢ C3.
To complete the proof, we must show u #0, i.e. u is a nontrivial solution of (1.8). This
is a consequence of the following lemma.
Lemma 2.47: For each B, K >0, there is a constant y = y(B,K) >0 independent of n such that
(2.48) "unﬂc >y

Proof: From (2.5), (2.8), we have

(2.49) pllvylle < allf )l

By (f3(1), for all ¢ >0, there is a constant Ac = Ac(K) > 0 such that
]4

(2. 50) z fyz) < elzlz +A |z

for all z ¢ IR. Employing (2.50) in (2. 49) shows

a €t a 3
1 2 -
(2.51) Ivale € == a4 22 A)

SV T VNPT




e ——_—

where A = I Vn“C + | wnllc. From Lemma 2.13, (2.6), and (2.50) we get

3
(2.52) ||wn||C5a3|| I fx(un)" 2 <2 a3|l fK(un)uLZ Sade A +A AD).
Adding (2. 51)-(2.52) yields
a
1 3
(2.53) An_<_(‘3 +Za4)c An+05An X :

Since the constants @ and a, are independent of n , on making € (alﬂ-l + 204) < % , we get

(2.54) iA < a
e

3 1
S 2
2 An or An _(2a5)

5 X s

Thus the lemma and Theorem 2. 39 are proved.
Remark 2.55: From (l.34) and the convergence of a subsequence of the un to u(p,K) we get, ;
(2.56) I £ ) | | <M,
Remark 2.57: Had we only assumed (fi), (f'z), and (f3) (see Remark 1, 37), the results of this
section remain unchanged until Lemma 2.32 which is lost. However the uniform bounds obtained
for ||lv || ,+ [lw || \ are sufficient to get a subsequence of v+ w_ to converge to a function

n H2 n c? n n
u = v+iwe¢ C which satisfies
(2.58) [l -Bv ¢y *+ Hulp)dxdt = 0

T

for all ¢ ¢ Cog(’l‘). Arguments in the proof of Theorem 2. 39 further show v ¢ C2 and w ¢ Cl.

Lastly the proof of Lemma 2.47 is unaffected for this case so u is a nontrivial weak solution of

(1.8).

a1




§3. A weak solution of (1.1).

In this section, the solutions u = u(p, K) of (}.8) will be used to get a weak solution of (. 1).
Our program is to first get an upper bound for || u(p,K)]IC independent of B and K. This permits
us to choose K so large that fK(u) = f(u) for u =u(B,K). With K thus fixed, we show {u(p,x)}
is equicontinuous in C(T) from which it easily follows that (1.1) has a weak solution. An addi-
tional comparison argument shows the solution we find is nontrivial.

To begin we have:
Lemma 3.1: Let v = v(B,K). Then with Mz as in (2.56),
(3.2) lvgll y < My/m.
Proof: Writing v(x,t) = p(x+t) - p(-x+t), from (2. 46) we have:

2 2
; (3.3) Zﬂﬁ{ "Ip(s)|ds < fo"{"uf.du(x,s-xnl + | lu(x,s4x))] )dxds.

Reversing the steps which led from (2. 4l) to (2. 46) then shows:
(3.4) m Bl p"| < |l f i
i l
Ll(Sl) o L

from which (3. 2) follows via (2. 56),

Corollary 3.5: There is a constant M5 independent of B and K such that

(3.6) llw(p:K)llc <M

Proof: From (2.15) we get

3 Hence the result follows from (3. 2) and (2. 56).

Our next goal is to get a bound for ||v||C independent of B and K. This is somewhat

delicate since we have to get a pointwise estimate while working with the projection of (1.8) on ]
N . :

E
Lemma 3.7: There is a constant A5 such that for all B, K>0, :
(3.8) ||V(ﬂ’K)”C < A5 v

Proof: If v =0 for some B,K, we trivially have a bound. Hence we assume v # 0 for what

follows. From (2.4l) we obtain

-18-
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(3.9) f (-B vy, + f(u) g dxdt = 0
T

for all ¢ ¢ N. Further assume ¢ ¢ Hl Then (3.9) can be rewritten as

(3.10) [r[p Vi@, + (F(viw) - £ (w))pldxdt = -_]:er(w)wdxdt :

We will get the estimate (3.8) by choosing ¢ to be an appropriate nonlinear function of v .
Define a function q : R- IR by q(s) =0 if |s| <M: q(s) =s - M if s >M:and qg(s) =s + M
if s < -M. Further set v= p(x+t) - p(-x+t) = v+ - v with [p]=0, t{l = q(v+), q = qiz’) :
and choose ¢ =q' -q . Then ¢ ¢ N by construction. Consider

(3.11) {vt ¢, dxdt = £[q'(v"')(v:)2 = q'(v+)v:vt' - q'(v')v;v: + q'(v')(v;)z]dxdt :

Since [vt] = 0, the middle two terms on the right in (3.1l) vanish by (2.2). The remaining terms
are nonnegative since q' > 0. Hence (3.10) implies

+ - + -
(3.12) fT(fK(ww) - fw))(a" ~q )dxdt < [ f (W)l fT(lq | + |q”|)dxdt .

Forany 6 >0, let T, = {(x,t)¢ T|[v(x,t)] 28}, Ty = {(x,t) ¢ T|v(x,t) >6}, and

T; = Ty \ T; . By (f,), the integrand on the left hand side of (3.12) is nonnegative. Therefore
(3.13)  [(f viw) - fwat-qT)dxdt > [ (£ viw)-f(w) ¢ (' - @) dxdt.,
K K = K K
T T6
Define
min f (z+0) - £ (L), z>0
Il-tl( M K K =
(3.14) b2 = =My
max fK(z+§,) = fK(;), z<0
lLl< M,

with M5 from (3.6). By (fz), 4»K(z) is strictly monotonically increasing, and by (1.7),

q,K(z)-» 10 as zZ ~» %%, By (3.14),

(V)
(3.15) f (fK(v+w) - fK(w))(q+ - q )dxdt > f 5 v(q+-q-)dxdt
+ +
T6 T6
b, (6)
S f v(q+ - q )dxdt
2 i 7,
T
)
since v(q+ - q-) > 0, Observing that for z <0
(3.16) q.K(z) = - min fK((,) - fK(z+ L)

<M
el <M,
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" we similarly find:

can (£ (v +w) - fK(w))(q+ - q )dxdt > [ vt q7)axdt .
T e 1)
6 C %5

For z >0, let p.K(z) = min(¢K(z), - q;K(-z)). Then pK(z) is strictly monotonically increasing

and pK(z)—» © as z-+9, By(3.15), (3.17) we have

p (8)
(3.18) f ([K(v+w) - fK(w))(q+-q-)dxdtZ "‘:(" v(q+-q-)dxdt

T, cTg

B, (8) Y
K b B o

= v" - v g -gNaxdt - [ wqt-q7)dxat) i

Tvlc T\T,

B (8)

K + 4+ - + =
2 go=[fivq +viqT)dxdt - & [(|q | + |q7|)dxdt] ,
Tvig 4 )
the last inequality following via (2. 2) since [v*] =0,
The definition of q(s) implies s q(s) > M|q(s)|. Hence (3.12), (3.13), and (3.18) imply:

(M- &) (8)

+ “ + -
(3.19) f (w) (lg | + |q |)dxdt > (la | + |q |)dxdt

gl fola'] e a7 honde > —ppt=fcla’l + 10
Choosing any M < || vE ”C' the integral term in (3.19) is positive so we can divide by it and
obtain:

M-6
3.20 6) < o

( ) “V“c PK( ) < “fK(W)uC

Since (3.20) is valid for any M < ﬂvtlb, we can pass to a limit and let M = || vtIIC. Further
noting that || v||, < 2|| v lor (3.20) implies

vl 6
(3.21) g 8 < W
2)lviilc

Choosing e.g. & = ;|| vtﬂc, we get

st

R
(3.22) mezIvill ) < allfwll
By (3. 6), the right hand side of (3. 22) is bounded independently of 8 and K. By (f3)(ii) and
(1.7), given any A >0, there is a zo(A) such that |£K(z)| > A forall |z|> z, and for all

K. Usingthe definition of By s (3.8) follows from these observations and the lemma is proved.

-20-




" Remark 3.23: Related but simpler arguments using q can be found in [1], [10]. A somewhat

cruder argument using (fs)(u) and avoiding (fz) could have been employed to obtain (3.8).
However the above proof makes the equicontinuely argument of Lemma 3. 29 much briefer,
Remark 3.24: Henceforth we take K = M5 + A5 so at a solution of (1.8) we have fK(u) = f(u).
Thus we can and will generally suppress K in what follows.
Corollary 3.25: There is a constant M6 independent of B such that
(3.26) ||w|| < M, .
1= =6
C
Proof: By Lemma 2.13,
(3.27) 1wl ) < al-p vy + )l
From (2. 46) we get
(3.28) Bllvyllc < 2l -
Hence (3. 26) follows from (3, 27)-(3.28), (3.6), and (3.8),
The last preliminary needed to obtain a weak solution of (1.1 ) is
Lemma 3.29: The functions v = v(B) form an equicontinuous family in C M N.
Proof: The proof is similar to Lemma 3.7 so we will be brief. Let u=v + w be a solution of
(1.8) and he R. Set v(x,t) = v(x,t+h), W(x,t) = W(x,t+h), U=V +w, V=v - v, W=w - w,
and U =V + W, From (2.4l) we have
(3.30) J-B Y, +fu) - fu) p dxdt = 0
T
for all ¢ ¢ N. This can also be written as

(3.3) [ BV, g dxdt + [((T+w) - f(u)) ¢ dxdt = - [(£(d) - (T+w))p dxdt .
T T T

Choosing ¢ = q(v+) -q(V) = Q+ - Q  where V+ = 3+ - v+, etc. yields the analogue of (3.12):

(3.32) [ (f(v+u) - fu)(Q - Q7)dxdt < [|f(ﬁ)-f(\7+w)llcf(|Q+| + |Q7|)dxdt. T
T T
From (3.6), (3.8), and (3. 26) we see

(3.33) [ - fvew)lo <y IWllo < v M Ih] . ',
Next let |(z), p(z) be as in Lemma 3.7 where we drop the subscript K and replace M" ]

by M_+ AS' Arguing as in Lemma 3,7 we find

5

wols




(3.34) Jttveu) - Q- Q7 )axat > I{,”l’ (M-8) [(|Q*] + [Q[)dxdt
and % L
(3.35) VL) < v, Mg Ih]
or
(3.36) max | |p(s+h) - p(s)| < Zp'l(4ylM6|h|)
Sse S

where as usual v(x,t) = p(x+t) - p(-x+t). Thus (3. 36) provides us with a modulus of continuity

for v independent of + and the lemma is proved.

Theorem 3,37: If f satisfies (fl)-(£3), (1.1) possesses a nontrivial weak solution u = v+w ¢

(CNN) (D(Cl n NJ) satisfying
(3.38) J (uO g + f(u) g)dxdt = 0
for all ¢« CT;(T). g
Proof: Let u(p) = v(B) + w(B) denote a family of solutions of (1.8) for g > 0. By Corollary
3. 25, the functions w(f) are bounded in Cl n N‘L and by Lemma 3.7 and 3. 29 the functions
v(B) are uniformly bounded and equicontinuous in C Nl N. Hence as B— 0 along some subse-
quence, u(p)- viwe (CN N) ®(C N NL). Thus writing (1. 8) in its weak form and passing to
a limit gives (3. 38).

To see that w¢ Cl n NJ', it suffices to show that w satisfies (2.15) with g = -f(u).
By (3.8), (3.28) and an interpolation inequality [I1],

1

2 s 59
—~ e o2y
t’(A5 h M_:,)) A5 0

p

- 0, we can pass to a limit in (2.15) for w(pB) to get (2.15) for w.

1
(3.39)  Bllvy®l B .sllvnm)llé VBl < )
as B~ 0. Since B Vel |
It remains to show u is a nontrivial solution of (1.1). This is a more difficult problem
than that confronted in Lemma 2. 47 since we no longer can use the B term to help us as earlier
and (f3)(i) gives us no information on how rapidly z'lf(z) - 0 as z-—- 0. We get around
these difficulties with the aid of a comparison argument. The following lemma completes the

proof of Theorem 3,37,

Lemma 3.40: There is a y >0 such that ||w(p)||C >y forall B near 0.
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Proof: From (2.50) we see

A
e 2 € 4
(3.41) PK(z) 2358 k&
for all ze¢ IR. Hence
A
DR S 2 T¢ 4
(3.42) I(u) > J(u) = {[z(ut -ug - By -eu’) - —Fu’dxde
forall ue U E . Recalling that
n
nelN
- k(n)+1
r,={he C(BR(n)nIR ,En)lh(u)=u if I(u)<o0},
we have
(3.43) gr inf max lI(h(u))z_ inf max K4l J(h(u)) = bn

heI ueB NRKY hel ueB_NR
n R n R

We claim that bn is a critical value of ”E . Indeed for ue N'N En = (l‘Rk)'L 5

n
1 2 Z 3 2
=f ¢ = =
(3.44) Zj,;, ut ux)dxdt > 2{ u - dxdt.

Since for uc E_, ||u||44 =o(|ull 22) at u = 0, by requiring that & < 3, we see there exists an
L )55

r=r(n,K) >0 suchthat J(u) >0 for ue (Br\ {op N (le)L. It is now easily verified that ]

satisfies the remaining hypotheses of Theorem 1.10 and bn as defined in (3.43) is a critical

value of JIE with bn > 0. From (3.43) and (1. 28), we have
n

B8 e = {[% fludu, = Fo(u )]dxde 2 b = %A 4 i dxdt

where Gn(ﬁ,K) is a critical point of IIE corresponding to the critical value bn. As was
observed in Remark 1.15, the fact that fnsatisfies (f3)(i) was only used to verify the hypotheses
of Theorem 1.10 and would not be used again until Lemma 2.47. Since ] does satisfy the hypo-
hypotheses of Theorem 1.10 and ez + Ae z3 satisfies (fl), (fz), and (f3)(ii), it follows from the
estimates of §l-2 that along a subsequence of n- o, Gn(p,l() converges to a classical solu-
tion u(p,K) of

- - - -3
Ou - =
u ﬁvu+eu+Aeu 0

(3.46) 3
U(0,t) = 0 =u(m,t) ; U(x,t+ 2m) = U(x,t)

Moreover from (3.45), we have

3.47 1 -
(3.47) {[2 fy(u(B, K) - Ty(u(B, K)))dxdt > 4 A f'r T

“23=




To see that u is a nontrivial solution of (3. 46) requires a slight modification of the proof of

Lemma 2,.47. Since

1 (3.48) Y, = 0,

! we find that

1 ~ 2 - 2 - a3

| (3.49) tallv,,tlle+ ellv,,uv2 <A lv lie 4lun| dxdt .

Using (3. 49), we can replace (2.49) by

- -3 =3
(3.50) ﬁ“vnnc <9 Ael[unncial A AL

! with A = Il v ”C + w "C Combining (3. 50) with (2.52) which remains valid for u_, shows

g _3 ) _3
(3.51) ﬂAnS alAe An+ a4p(e An+l\e An)

JE T o
where @, is independent of ¢, n, B, K. Choosing ¢ <(Zaz4)-l given /'xn Zﬁerz(al +a,) 2y
Hence ||u(p,K) lc satisfies the same inequality.

Now to obtain the lower bound for || w(p)llC (where we suppress the dependence on K via

Remark 3. 24) suppose to the contrary that w(f)— 0 along some subsequence. From (3.22) we
conclude the same is true for v(p) and hence u(B). Then by (3.47), |lu(p)] . 0 as B—~ 0.
I
Applying (3.4) for u and (2.15) shows
- - - “
(3.52) lw) |~ <a, llea@)+a ap) || ,—~o0
€ 5 I3 Ll

as P- 0. Next employing (3.10) for the u problem with ¢ = v gives

(3.53) S 4397w+ 392 Whdxdt = - [ ¢ WP dxdt.
s T
An application of the Holder inequality implies
(3.54) Iverl 4 < agliwel , -
L L
P S -+
Since v=v -v with [v ] =0 and by (2.2),
(3.55) [faxat = [+ 60H2E)E 4 () axar
T T
we have
- -- -4
(3.56) f((v+)4 + (v )4)dxdt < az [|wil 4
L

Returning to (3.10) with ¢ = q(\'r+) - q(\.l_) = q+ - g and making some crude estimates gives:
42380 [¥@* - anaxdt < ap (15418 4 1wID e [at] + la”
" <o Ic lc ICT q | +|q7|dxdt .

w2a




. Expanding the left integral and using (2. 2) again shows:

= - = ek (R, & = ——
(3.58) [ “@*-anaxar > [(5H P+ @0 q - @0H a7 - (07) qhjaxat
T T
where we dropped two nonnegative terms from the right hand side. Using (2. 2), (3.56), and the

Hélder inequality to estimate the last two terms on the right in (3, 58) leads to

3.59) M [(lq*| + [q hdxdt < [[")3qt + (37) 3 Jdxdt
T T

-+, 2 -n2 - + -
< agIvifs + lIWIlC)IleC{(Iq ) + la”)dxdt
(since s3q(s) > M3|q(s)|). Arguing as in Lemma 3.7, we conclude

(3.60) Ive)lle < agliwele -

Returning to (3.52) again and using (3. 60) yields

c 2 - 3.~ 3
(.60 we)llo < 2n” e felrag) WPl + A (rag) [ WR)lic) -
Note that the constants @y, ag, and Ac are independent of B and g and ay are independent
of €. Moreover (3.61) holds forall 0 <g < min(3,(2a4)-l). Thus further choosing 0 <e <

[-trrZ a5(1+a9)]'l shows

=

- Z 3 -E
Iwe)llc 2 (2n ag A_(1+ag)”)

contrary to (3.52). Thus Lemma 3. 40 and Theorem 3. 37 are proved,
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§4. Regularity of the weak solution,

We have shown (1.1) possesses a weak solution u = v+w with v¢ CN N and we Cl n Nl,
In this section we shall prove that in fact v e Cl AN and we CZ n NJ‘. It then follows that

Ow+ f(u)=0, 0<x<m, te R

together with our boundary and periodicity conditions. This is not quite a classical solution of
(1.1) since we only have v ¢ Cl. However assuming f has more derivatives, we shall show
greater regularity obtains for u. This will complete the proof of Theorem 1.6. We are indebted
to L. Nirenberg for some of the ideas used in the proof of the following result.
Theorem 4.1: If f satisfies (fl)-(f3) and u = v+w is a nontrivial weak solution of (1.1) with
ve CNN, we ClﬂNL, then v e ClﬂN and we c?nnt.
Proof: First we show ve Cl. Once that has been established, it follows from Lemma 2.13 that
W e CZ. Two cases are considered:
Case 1: Suppose there is an s ¢ [0,27] such that u(x,é-x)E a, a constant, for all xe¢ [0,7].
Then o = 0 via our boundary conditions. Writing v(x,t) = p(x+t) - p(-x+t) with [p] = 0 and
setting t = s-x, for s =S we have
(4.2) p(s - 2x) = p(8) + W(x,5 - X), xe [0,7].

The right hand side of (4. 2) is continuously differentiable with respect to x . Therefore so is the

left hand side. Hence p and v are continuously differentiable. Moreover | p' ”C'Sl) <
\
l 3
Sllw so
2wl
(4.3 VI, < vl
C C

Case 2: Suppose there is no s e [0,27] such that u(x,s-x) =0 forall xe [0,m]. Then (fz)
implies there is a y > 0 such that
(4.4) ST (u(x,s-x))dx > y

o 5
for all se [0,27]. Since u(B)- u in C as P -+ 0 along a subsequence, for all small such B
we have:

mw
(4.5) ; ST £ upNx, s-x)dx > L >0

0
for all s ¢ [0,2m]. Differentiating (2. 46) with respect to s shows
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(4.6) 2wf p(s) = {"{fu(u(x,s-x))[p'(s) - p'(s-2x) + 8—2—w(x,s-x)] -

-fu(u(x,s+x))[p'(s+2x) - p'(s) + _aas-; w(x, s+x)] }dx
i where we have not explicitly noted the dependence of p and u on B. This equatiorrean be

rewritten as
(4.7) -2w B p"(s) + p'(s) j":(fu(u(x,s-x)) + fu(u(x, s+x)))dx =
'3 = j:[fu(u(x,s-x))(p'(s-Zx) -~a—z w(x,s-X)) + fu(u(x,s+x))(p'(s+2x) + % w(x, s+x)]dx.

Observe that

£ f(u(x,s-x)) = fu(u(x,s-x))(z p'(s-2x) + 5% w(X, s-x))

(4.8)

%f{u(x,si»x)) = fu(u(x,s+x))(2 p'(s+2x) + ?6’_( w(x,s+x)) .

Hence on integrating (4.8), using (fl), and the boundary conditions for u , we find:

f;’ £ (u(x,s-x)) p'(s-2x)dx = % {)"fu(u(x,s-x)) 56? w(x, s-x)dx
(4.9)
4 i i l w i
_g fu(u(x,s+x)) pP'(s+2x)dx 3 2{; fu(u(x,s+x)) D% w(x,s+x)dx .

Substitution of (4.9) into (4.7) yields
m

(4.10) =2m B p"(s) + p'(s) f (£, (u(x,5-%)) + £ (u(x,s+x))dx =
0

= fﬂ{fu(u(x,s-x))[ % -5?(- W(X,S-X) - aﬁs— w(x,s-x)]
0

1 9 0
+ fu(u(x,s+x))[-z e w(x,s+x) + 3s w(x,s+?<)]}dx s
Hence ¢(s) = p'(s) satisfies an equation of the form

(4.11) -2m B ¢'"(s) + a(s) ¢(s) = h(s)

where h e C(Sl) and is bounded independently of B > 0. Moreover a(s) > v/2. Since p'

must vanish somewhere in [0,27] and p'#0, ¢ has a positive maximum and a negative mini-

mum. From (4.1l) we then conclude

2
and
(4.13) 1B o oly € 2 aliwerll € 2 oM

: : C(S) =y 1 C =y 178"
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It follows that p(s) = lim p(B)(s) is in HI(SI). Multiplying (4.10) by ¢ ¢ LZ(SI), inte -
grating over [0, 2w] and letting P - 0, we see that (4.10) is valid in an a.e. sense with p = 0.

Then (4.4) and ve C, wWe Cl imply PpP'e C(Sl) SO Ve Cl. The proof is complete.
k+l

Corollary 4.14: If f is k times continuously differentiable, k >1, then v ¢Ck and we C
Proof: The proof is by induction on k . It has already been established for k = 1. Assume it

for k = j-1. To get the result for k = j, note first that v ¢ C1 implies that w e CHI, again via

J

Lemma 2.13. Toget ve C°, we consider the two cases of Theorem 4.1, In Case l, (4.2) can

]

be differentiated j times since we C° and this gives the result. In Case 2, consider (4.10)

with P = 0. Dividing by
fﬂ(f (u(x,s-x)) + f (u(x,s+x))dx
o Y u
the resulting right hand side is j-1 times continuously differentiable via (4.4) and the induction

il and Ve Cj .

hypothesis. Hence p' e C
Remark 4.15: It is worth observing at this point that the arguments of §2-4 show that if
u = v#w is a weak solution of (1.1) with
(4.16) ||f(u)|| 1 <
L
where f satisfies (fl)’ (fz) and
(f'3) |f(z)| = as |z| =,

then v Cl and we CZ. Moreover if fe Ck » k>1, then ve Ck and we Ck+1
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§5. Various extensions.

This section contains extensions of Theorem 1, 6 in four directions. First we prove the re-
sult stated in the introduction concerning the existence of nontrivial periodic solutions of (0.1)
for any period which is a rational multiple of 7. The next two generalizations involve weakening
the hypotheses (fl)-(f3). If (fl)-(fz) are replaced by (fi)-(f'z), we can still get a ""weak' solu-
tion of (1.1) (Theorem 5.6) while if (£3)(1) is weakened by adding a linear term with the proper
sign to f , an analogue of Theorem 1.6 (Theorem 5.13) still obtains. Lastly we study the forced
vibration question for (0.1), i.e. we permit f to depend on x and t in addition to u . Since
the above results mainly involve minor modifications of the arguments of §l1-4, we will generally
be sketchy with details here.

Theorem 5.1: Let f satisfy (fl)-(fs). Then for any j, me IN, the problem

c

-u__ % f(u) =0, 0<x<m telR,
(5.2) L

u(0,t) =0 = u(m,t)
possesses a nontrivial solution u = v + we (Cl n N)(B(C2 n N‘L) which has the period r;'in Lo o
Proof: It suffices to prove the result for j =1. Only small modifications need be made in §l1-4.
The most important changes are the following: We replace T by Tm = {(x,1) ¢ [o,n]X[O,:-;]} -

the spaces Lz, Ck, etc introduced in §1 now are taken relative to Tm: N is replaced by

m

{P(x+t) - P(-x+t)| p is — periodic and [ pl(s)ds <)
and En by span {sin j x sin 2m k t, sin j x c:s 2m k t|0 € j,k <n}. Itis straightforward to
verify that Lemma 2.13 is valid for this new class of functions with no change in the representa-
tion (2.15) but only in the underlying class of functions. The results of §l-4 now go through
with minor changes and Theorem 5.1 obtains
Corollary 5.5: Under the hypotheses of Theorem 5.1, (5.2) possesses infinitely many distinct
nontrivial solutions which are periodic in t .

Proof: By Theorem 5,1, for each n ¢ IN, (5.2) possesses a nontrivial solution having period

'-'11 in t . Hence infinitely many of these solutions must be distinct,
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Next we study the effect of weakening (fl)-(fz) to (il')-(f;_)(See Remarks 1,37 and 2. 57) on

Theorem 1.6. Here as was pointed out to us by H. Brezis the monotonicity of f can be exploited
to get a weak solution of (1.1) using a standard monotonicity argument,

Theorem 5.6: If f satisfies (fl')’ (fé),(f3),then (3. 38) possesses a nontrivial solution u = viw
with ve LN N and we C N NT,

Proof: Remark 2. 57 gives us a nontrivial solution u(B,K) of (2.58) with v(8,K)¢ C° and
w(B,K) ¢ Cl. The argument of Corollary 3.5 goes unchanged for this case to give a bound on

I w(ﬁ,K)]lC independent of B and K. Since uK(z) -~ ®© 3s z - ©, we still obtain (3.8). Hence
we can drop the dependence of u on K as earlier. The bound (3. 26) remains valid here., Un-
fortunately the proof of Lemma 3. 29 no longer holds. Nevertheless one can still get the con-
vergence of a subsequence of the u(p) as P - 0. Indeed since the functions u(p) are bounded
in 120 Lw, Ou(p) are bounded in Lz, w(B) are bounded in Cl, and B 0 weakly in i"
as B - 0, it follows that we have

1 £* c |
up) —u, OBup) ™= g, wp-=w '

along a subsequence of B—- 0. Note that if
2 2
R O T
n n

0
then for all ¢ ¢ C0 5

_!r'wgdxdt = lim [ ¢ Oh_dxdt = limfhnD¢dxdt=thwdxdt.

n-—© T : n= o T -
Thus Oh= ¢ weakly and Dhnl—‘- Oh. Hence 0O has a closed graph as a mapping of szeak .
2
2 L
O = 0
Lweak so u(p) u.
o0
Forany pe L , by (£'Z),
(5.7) (£(u(B)) - f(p))(u(B) - p) >0 .

Integrating over T and using (2.58) yields

(5.8) J (B (B) - Du(B) - f(p))(u(B) - p)dxdt > 0 .
T

Letting B - 0 along our subsequence in (5.8) and noting that

2
p4 Yy (B) u(p) dxdt = -B|lv, (muLZ €9,
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we get
(5.9) J(-Du - £(p)) (u-p)dxdt >0
T
for all pe Lw. Choose p=u+ AX, Xe¢ Cw, A\ >0. Hence (5.9) becomes

(5.10) .!1“(_Du - fu+hx))(-Ax)dxdt > 0 .

Dividing by \ , letting \ - 0, and noting that x is arbitrary we find
Ou+ f(u) =0 a.e.
from which (3. 38) and Theorem 5.6 follow.
Remark 5.11: Lemma 2.13 implies the first derivative of w is in L°o 5
For our next generalization of Theorem 1,6, we consider

Ou + au + f(u) =0, 0<x<m, telR
(5.12)

u(0,t) =0 = u(m,t) , u(x,t + 2m) = u(x,t)
Theorem 5.13: If a >0 and f satisfies (fl)-(£3), then (5.12) possesses a nontrivial solution
u = viw with ve c'n IN, we c?nnt,
Proof: There are several approaches one could take to this problem such as beginning anew with
a variant of (1. 8) in which B vtt is replaced by a term more suitable to (5.12). However we
will remain in the framework set up in §1-4 in order to take advantage of the theory we have

developed. The first significant modification to our earlier arguments arises in the proof of

+
Lemma 1.13 where we must replace N, N by other spaces. Let

Nl = span {sin jx sin kt, sin jx cos ktlk2 =a+ )2} .
N; = span {sin jx sin kt, sin jx cos kt[kz >a+ jz} 5 and
N; = span {sin jx sin kt, sin jx cos ktlkz <a+ jz} .

Observe that Nl = {0} is possible. Set IRkHE En n Nlc})N;t})span{sinx sin k t} where k

-2
is the smallest element of IN satisfying k > a+ 1. Then the conclusion of Lemma 1.1l obtains
k
with this choice of IR i . Moreover the argument of Lemma 1,14 goes through essentially as
earlier with (22-1) replaced by Ez - (a+l). The presence of the a term does not effect any of

the estimates and arguments of §2-4 required for the existence of a solution of (5.12) in an

unfavorable fashion. (See also Remark 1.15 in this regard). Thus we get existence of a solution
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u(B,K) of (1.8 ) (with fK - au + fK) and u of (5.12). The proofs of Lemmas 2.47 and 3. 40
are not valid here since they employed (f3)(1) which is not satisfied by a z + f(z). Lemma 2. 47
can be salvaged as follows: The analogue of (2. 49) for our equation (with vn e N, wn € NJ“
as usual) is
5.14)  yBlv IS < Bllv 1%, +allv 1%, < v el v, I

$ T nllc = Rina k2 e = Yaligia fe e -

This observation gives (2.5l), An being defined as earlier, with different constants:
3

(5.15) p"vn"C < y3&:An+y4 An 5

Now we distinguish between two cases depending on whether N1 is trivial or not.

Case l: dim Nl =0.

Then (2.15) implies (O + a)-l is continuous from Lo M NY ~ € NN*: 0
(5.16) ||wn ”C < Y5" B tav P fK(un)" -
and by (2.6), (5.14), and (2.50),

3
(5.17) ||w“||C < y6(e An + Ae An)
Combining (5.15) and (5.17) as in Lemma 2. 47 then shows An is bounded away from 0 .
Case 2: dim N1 >0.

We argue indirectly for this case using a comparison argument. To denote the dependence
of Nl’ N; on a , we write Nl(a), etc. Observe that for « > a, Nl(a)QN;(a) < N;(a). We
have dim N (a) >0. For a slightly larger than a , dim N(a) = 0 and Nl(a)@N;(a) = N;(a).
We fix such an «. Let '

1. 2 2 2 2
(5.18) I, (u) = {[Z(Ut -ug - B v - Au) - F(u))dxdt
Then la(u) > Ia(u) for all u e En and from Lemma 1,13 we see l‘n(a) = Fn(a) and cn(a) >

cn(a) > 0. For g, Ae as in (2. 50), define
2 2 77 2 2 1 4
(5.19) ]x(u) = —,{,[Z(ut - ux-ﬁ Ve = AU -gu) e Ae u Jdxdt .
Theﬁ as in Lemma 3,40, for e sufficiently small compared to a-a, we have a critical value
bn(a) of ]a(u) with cn(a) > bn(a) >0,
Suppose ﬂun(a)ﬂc -~ 0 as n- o, Then by (1.28), Cn(a) and a fortiori bn(a)-o 0. This

implies Ilﬁn(a) I 4 ~ 0 by(3.45). But the argument of Case | (with ¢ possibly still smaller)
L
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shows llﬁn(a) “C is bounded away from 0 . Since ﬁn(a) converges in C , this is contrary

to (3.45).

Thus we have shown u(f,K) is nontrivial. A more complicated argument based on the

above and the proof of Lemma 3. 40 then shows the solution u of (5.12) is nontrivial. We will

not carry out the details.
For our final results, we consider
Ou+ f(x,t,u) =0, O0<x<m te R
(5.20)
u(0,t) =0 = u(m,t), u(x,t+ 2w) = u(x,t)
first under the hypotheses:

(fl) fe Cl([O,v]XRZ,lR), f(x,t,0) =0, and f is 2w periodic in t

(fz) f(x,t,z) is strictly monotonically increasing in z and fz(x,t,z) >0 for znear 0, z # 0

(f3) (1) f(x,t,z) = o(|z]|) at z=0

(ii) There isa z >0 so that F(x,t,z) = fz f(x,t,s)ds < 0 z f(x,t,z) for |z| >z

where 0 ¢ [0,%). ;
Here we can show
Theorem 5.21: If f satisfies (fl)-(fB)’ (5.20) possesses a nontrivial solution u = v+w ¢
' n vy oc? 0wt
Proof: A truncation of f analogous to (1.7) is required. Let
f(x,t,z) if |z| <K,

(5.22) fK(x,t,z) . f(x,t,K) + fz(x,t,K)(z-K) + p(K)(z-K)3, z>K

f(x,t, -K) + fzgx,t,-K)tzﬂ() + p(x)(z4l()3, z < -K.

Note that fK is merely continuous in (x,t) for |z| > K. It is easy to verify that the results of

§1-2 are valid for this case with only minor modifications until Lemma 2. 32 where it was neces-

sary to differentiate fy with respect to t ., This we cannot do unless ||un(p,K) ||C <K.

ever Remark 2,57 gives us a weak solution of the modified equation for (5. 20) with v ¢ CZ

w ¢ Cl‘ Since (3.2), (3.6), and (3.8) are still valid, we get |[u(ﬁ,K)][C _<_A5 + MS indepen -

dently of p and K. Hence for K > A5+ M¢, and for n appropriately large, since
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u (8, K= u(p,K) in C, we can assume Ilun(B,K) “C < K. By our above observation, Lemma
2.32 is now applicable for n large. Thus the proof proceeds essentially as earlier with the
second part of hypotnesis (Tz) now required for Case 2 of the proof of Theorem 4.1.
Remark 5.23: The ooservations made in Remark 4.15 apply equally well to (5. 20).

As our concluding result we have
Theorem 5.24: If -f satisfies (fl)-(f3), (5. 20) possesses a nontrivial solution
u=viwe (€' NN Bc? 0t
Proof: The proof of Theorem 5. 21 works for this case with tne following changes: In the defini-
tion of I, replace B by -B. Then use -I in the minimax argument of Lemma 1.13 and also
reserve the roles of N' and N~ .
Rémark 5.25: Theorem 5.24 applies equally well when f is independent of t . However for
this case our methods do not guarantee that the solution u(x,t) depends explicitlyon t, i.e.
we may only obtain a solution of the ordinary differential equation

-dzu

— + f(x,u)=0, O0<x<TW
2
dx

u0) = 0 = u(w).

(5.26)
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Appendix

The purpose of this Appendix is to prove Theorem 1.10. To do so, we require two prelim-
inaries; a standard result from the calculus of variations and a topological intersection lemma.
We are indebted to E. Fadell for the proof of the latter.

1 _m m m
Lemma A.l: Let Je C(R',R), A = {xc¢ R |J(x) <s}, and K, = {x¢R |J(x) =s and

J'(x) =0}. Let € >0 and ce R. Then there is an ¢ ¢ (0,6) andan ne C([0,1] X R, R")

such that
3 n(t,x) = x if Jx)¢(c-€, Cte)
o
2 n(LA VCA, _if K =¢.

For a proof of this lemma see-e. g:-[7] or [12]. The notation of Theorem 1.10 will-be"
employed in the next result.

k+l ~ = + = + .m L
Lemma A.2: Let b, =R n Bp and bR = {x ¢ BRlkazO}. If ge C(bR,IR ), m >k, p<R,

and there is a homotopy G e C([0,l] X 0 b;,lRm\(aBpn (le)J)) such that G(0,x) = x and
G(1,) = g, then g(bp) N 2B 1 (R = o,

Proof: Intersection theory in IRm [13, p. 197] provides a simple proof. To normalize the prob-

o+

P o 0 (R, b= b’ and

lem somewhat, let R=1, p<l. Set Dm-k = ﬁp n (IRk)-,L oD

ab' - {x ¢ b+|x =0 or |x| =1} . The intersection pairing

k+l

m-k m-k +
Hm+k(D , 9D )XHk(ab Y 4

yields +l as intersection number for appropriately chosen generators in the homology groups
above. Furthermore naturality yields the diagram

ok ek Hk(ab+) - Z

id X j /
m-k

m-k m m-
0
Hmk(D , 8D J X Hk(IR \ 9D

m+k

k

- + -k
where §: 8b+ | = mm \ aD'“ . is inclusion, If ge¢ C(b ,IRm \ D" ) and G as in the state-
ment of the Lemma, then j* would be the trivial homomorphism and thus would force the inter-

section number to be 0 which is a contradiction,
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- Theorem 1,10: Let Je Cl(IRm,IR) and I:IRm—- IR where J(x) <I(x) for all xe¢ IRm and

J(x) <0 forall xe IRk . If there are constants R >r >0 suchthat J]>0 in (Br\ {o}h n (IRk)l 1
while 1 <0 on Rr" N BR , then ] has a critical point in {x¢ IRmII(x) >0} and a corresponding

critical value characterized by

(1.11) c= inf m ’il g J(h(x)) >0
R

he ' xe¢ R NB
k+l, = m ;
where I' = {(he C(R N Bp R )|h(x) = x if I(x) <0} .

Proof: Let heI'. Then h(x) =x if I(x) <0 . Since 1 <0 on IRk UaB h(y) =y on

R’ ‘
+ 3
9 bR . Hence h =g trivially satisfies the homotopy hypothesis in Lemma A.2 for all p <R,

Therefore-for-all -such p, S g el et o e .

(A.3) h(b* ) N 2B N (R =g .
Choosing any p <r and letting

a = min I(z) ,
ze aBpﬂ(mk)L

then a is positive by hypothesis and by (A.3) with p=r

(A.4) ma J(h(x)) > a>0.
s mi‘(” s,

Thus by (A. 4) and the definition of ¢, ¢ >a > 0. It remains to show that c is a critical value

of J. We argue indirectly. Suppose c is not a critical value of J. Then we can invoke

Lemma A.l with ¢ < % Observe that if he I', then n(l,h) e C(IRk+l n ER,IRm). Moreover

if I(x) <0, then J(x) <0 and h(x) = x. Therefore by l0 of Lemma A.1 and our choice of ¢,

n(l,h(x)) = n(l,x) = x. Consequently n(l,h)e T .
Finally choose h e I' such that

(A.5) max J(h(x)) < c+¢ .
X € l'Rk+ln BR

Then by 2° of Lemma A. I,

(A.6) max _ Jn(l,h(x)) <c -¢,
X € IRk"'l n BR

contrary to the definition of c. Thus the theorem is proved.
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Remark A.7: If ¢ = max]J, arefined version of Theorem 1,10 shows Kc contains infinitely
»
B
many critical points. Ong can also give an infinite dimensional version of the theorem. Since

these results are extraneous to the main topic of this paper, we will pursue them elsewhere.
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